Skip to main content
To KTH's start page To KTH's start page

Deep Learning Architectures for Science and Engineering

Time: Mon 2024-05-27 10.30 - 11.30

Location: Osquars Backe 5, floor 2

Participating: Prof. Nathan Kutz (University of Washington)

Export to calendar

Abstract:  Physics based models and governing equations dominate science and engineering practice. The advent of scientific computing has transformed every discipline as complex, high-dimensional and nonlinear systems could be easily simulated using numerical integration schemes whose accuracy and stability could be controlled. With the advent of machine learning, a new paradigm has emerged in computing whereby we can build models directly from data. In this work, integration strategies for leveraging the advantages of both traditional scientific computing and emerging machine learning techniques are discussed. Using domain knowledge and physics-informed principles, new paradigms are available to aid in engineering understanding, design and control.

Bio:  Nathan Kutz is the Yasuko Endo and Robert Bolles Professor of Applied Mathematics and Electrical and Computer Engineering at the University of Washington, having served as chair of applied mathematics from 2007-2015. He is also the Director of the AI Institute in Dynamic Systems (dynamicsAI.org). He received the BS degree in physics and mathematics from the University of Washington in 1990 and the Phd in applied mathematics from Northwestern University in 1994. He was a postdoc in the applied and computational mathematics program at Princeton University before taking his faculty position. He has a wide range of interests, including neuroscience to fluid dynamics where he integrates machine learning with dynamical systems and control.